Topic 6-
Vector Spaces

HW 6 Topic - Vector Spaces

We are going to generalize is.] Field what a scalar/number is.] Then we will generalize] $\begin{aligned} & \text { sector } \\ & \text { space }\end{aligned}$ what a vector is. space

Def: A field consists of a set F of "scalars" or "numbers" and two operations t and. such that if x and y are scalars in F then there exists unique elements $x+y$ and $x \cdot y$ in F. Also the following properties must hold:
(F1) If a, b, c are in F, then:

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a \\
& a+(b+c)=(a+b)+c \\
& a \cdot(b \cdot c)=(a \cdot b) \cdot c
\end{aligned}
$$

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

$$
(b+c) \cdot a=b \cdot a+c \cdot a
$$

(F2) There exist unique elements 0 and 1 in F where

$$
x+0=0+x=x \text { and } 1 \cdot x=x \cdot 1=x
$$

for all x in F.
(F3) Let x be in F.
Then there exists a unique element $-x$ in F where $x+(-x)=0$ and $(-x)+x=0$.
In addition if $x \neq 0$, then there exists a unique element x^{-1} in F where

$$
\begin{aligned}
& \text { ists a unique element } \\
& x \cdot\left(x^{-1}\right)=1 \text { and }\left(x^{-1}\right) \cdot x=1
\end{aligned}
$$

Ex: $F=\mathbb{R}$, the set of real numbers, is a field using the usual t and. .

Why is \mathbb{R} a field?

- Adding and multiplying real numbers gives a real number.
(1) All the properties from (F1) axe
(2) \mathbb{R} has elements 0 and 1 that true in \mathbb{R}. behave as in F2.
(3) We have (F3) is true.

Note: In our class, \mathbb{R} is the only field that we will use. But let's see some others just to see.

Ex: The set of complex 1 pg 4 numbers $[$ is a field.

We wont use this field in this class.

Ex: There even exist fields that are finite in size. You get these by "modular arithmetic".

For our class, we will always use \mathbb{R} as our field.
But I will state theorems for general fields.

Now we generalize what a "vector" is.

Def: A vector space V over a field F consists 6 of a set of "vectors" V and a field F with two operations, "Vector addition" + and "vector scaling", such that if $\vec{V}, \vec{\omega}, \vec{z}$ are vectors in V and α, β are scalars from F then the following must hold:
(1) $\vec{V}+\vec{w}$ is in V.
(2) $\alpha \cdot \vec{v}$ is in V
(3) $\vec{v}+\vec{w}=\vec{w}+\vec{v}$
(4) $\vec{v}+(\vec{w}+\vec{z})=(\vec{v}+\vec{w})+\vec{z}$
(5) there exists a unique vector
such that $\overrightarrow{0}+\vec{y}=\vec{y}+\overrightarrow{0}=\vec{y}$ for any \vec{y} in V.
(6) there exists a vector $-\vec{v}$ in $\underset{\rightarrow}{V}$ where

$$
\begin{aligned}
& \text { there exists a vector } \overrightarrow{0} \text { and }(-\vec{v})+\vec{v}=\overrightarrow{0} \\
& \vec{v}+(-\vec{v})=\overrightarrow{0}
\end{aligned}
$$

(7) $1 \cdot \vec{v}=\vec{v}$
(8) $(\alpha \beta) \cdot \vec{V}=\alpha \cdot(\beta \cdot \vec{V})$
(9) $\alpha \cdot(\vec{V}+\vec{\omega})=\alpha \cdot \vec{V}+\alpha \cdot \omega$
(10) $(\alpha+\beta) \cdot \vec{V}=\alpha \cdot \vec{V}+\beta \cdot \vec{V}$

Ex: Let $V=\mathbb{R}^{n}$ and $F=\mathbb{R}$
\mathbb{R}^{n} is a vector space over the field \mathbb{R} using the usual vector addition and scalar multiplication.

vector addition:

$$
\left\langle 1, \frac{1}{2}\right\rangle+\langle 0,-5\rangle=\left\langle 1,-\frac{9}{2}\right\rangle
$$

scalar multiplication:

$$
5 \cdot\langle 1,-2\rangle=\langle 5,-10\rangle
$$

One can check that this
example satisfies all 10 properties of being a vector space. Some we did in class and HW in earlier topics.

$$
\begin{aligned}
& \text { Ex: Let } \\
& \left.V=M_{2,2}=\left\{\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\, \begin{array}{cc}
a, b, c, d \text { are } \\
\text { real numbers }
\end{array}\right.\right\} \\
& =\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
5 & \pi
\end{array}\right),\left(\begin{array}{cc}
\sqrt{2} & \frac{1}{2} \\
5 & 3
\end{array}\right), \ldots\right\} \\
& \uparrow \\
& \text { these are the } \\
& \text { infinitely } \\
& \text { many } \\
& \text { more } \\
& \text { "vectors" } \\
& \text { and } F=R \quad s \text { scalars }
\end{aligned}
$$

We will use the usual addition

$$
\begin{aligned}
& e \text { will use the usual addition } \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right) \\
&
\end{aligned}
$$ and scalar multiplication

$$
\alpha\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right)
$$

One can check that the 10 vector space properties hold.
Here the zero vector is

$$
\overrightarrow{0}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and the additive inverse of $\vec{v}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\text { is } \vec{V}=\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right)
$$

So, $V=M_{2,2}$ is a vector space over the field $F=\mathbb{R}$.

Ex: Pick some integer $n \geqslant 0$
(So, n can be $0,1,2,3,4, \ldots$)
Let V be the set of all polynomials of degree $\leq n$, denoted by P_{n}.

So,
"vectors"

$$
\begin{aligned}
& V=P_{n} \\
& =\left\{a_{a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \left\lvert\, \begin{array}{l}
a_{0}, a_{1}, \ldots, a_{n} \\
\text { are rear } \\
\text { numbers }
\end{array}\right.}\right.
\end{aligned}
$$

Let $F=\mathbb{R}$. scalars
Define vector addition as the usual polynomial addition?

That is,

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right) \\
& \quad=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

Scalar multiplication is

$$
\begin{aligned}
& \text { Scalar multiplication } \\
& \qquad \begin{array}{l}
\alpha\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \\
=\left(\alpha a_{0}\right)+\left(\alpha a_{1}\right) x+\cdots+\left(\alpha a_{n}\right) x^{n}
\end{array}
\end{aligned}
$$

Two polynomials are defined to be equal if they have the same coefficients. That is,

$$
\begin{aligned}
& \text { equal } \\
& \text { coefficients. That is, } \\
& a_{0}+a_{1} x+\cdots+a_{n} x^{n}=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \\
& \text { if }
\end{aligned}
$$ if and only if

$$
a_{0}=b_{0}, a_{1}=b_{1}, \ldots, a_{n}=b_{n}
$$

Here,

$$
\overrightarrow{0}=0+0 x+0 x^{2}+\cdots+0 x^{n}
$$

and

$$
\begin{aligned}
& -\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}\right) \\
& =\left(-a_{0}\right)+\left(-a_{1}\right) x+\left(-a_{2}\right) x^{2}+\ldots+\left(-a_{n}\right) x^{n}
\end{aligned}
$$

One can verify that properties
(1) - (10) are true and hence $V=P_{n}$ is a vector space over $F=\mathbb{R}$.
$E x: \quad F=\mathbb{R} \leftrightarrow$ scalars

$$
\begin{aligned}
& =\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \left\lvert\, \begin{array}{l}
a_{0}, a_{1}, a_{2}, a_{3} \\
\text { are in } \mathbb{R}
\end{array}\right.\right\}
\end{aligned}
$$

Examples of adding \& scaling:

$$
\begin{aligned}
& \text { Examples of adding \& scaling: } \\
& (1-x)+\left(1+x-x^{2}+x^{3}\right)=2-x^{2}+x^{3} \\
& 5\left(1+x-x^{2}+x^{3}\right)=5+5 x-5 x^{2}+5 x^{3}
\end{aligned}
$$

Notice that P_{3} behaves
like \mathbb{R}^{4}. The powers of x are like placeholders.

$$
\begin{gathered}
\text { like place holders. } \\
=6+x+3 x^{2}
\end{gathered}
$$

This is like

$$
\begin{aligned}
& \text { like } \\
& -1,1\rangle+\langle 5,-1,1,2\rangle \\
& =\langle 6,1,0,3\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { and scaling } \\
& 3 \cdot\left(1+x-x^{2}+5 x^{3}\right)=3+3 x-3 x^{2}+15 x^{3} \\
& \text { ts like }
\end{aligned}
$$

$$
\begin{aligned}
& \text { that like } \\
& 3<1,1,-1,
\end{aligned}
$$

$$
\begin{aligned}
& \text { that like } \\
& 3\langle 1,1,-1,5\rangle
\end{aligned}=\langle 3,3,-3,15\rangle
$$

Def: Let V be a vector space user a field F. Let W be a subset of V. We say that W is a subspace of V
 if the following three conditions hold:
(1) \vec{O} is in W.
(2) If \vec{V} and $\vec{\omega}$ are in W, $]$
W is closed then $\vec{v}+\vec{w}$ is in W. addition
(3) If \vec{z} is in W and α] ω is closed is in F, then under scaler multiplication $\alpha \vec{z}$ is in W.

Note: One can show that if W is a subspace of V if and only if W itself is a vector space living inside of V.

Ex: Consider the vector space $V=\mathbb{R}^{2}$ over the field $F=\mathbb{R}$.
Let

$$
\begin{aligned}
& \text { _et } \begin{aligned}
& W=\left\{\begin{array}{l}
\langle x, 0\rangle \mid x \in \mathbb{R}\} \\
\end{array}\right. \\
&=\left\{\begin{array}{cc}
\langle 0,0\rangle,\langle-1,0\rangle,\langle\pi, 0\rangle, \ldots \\
x=0 & x=-1
\end{array}\right\} \\
& \begin{array}{c}
i n \\
\text { infinitely } \\
\text { many } \\
\text { more }
\end{array}
\end{aligned}
\end{aligned}
$$

Let's prove that W is a subspace of V.
proof:
(1) Set $x=0$ in $\langle x, 0\rangle$ and we get that $\langle 0,0\rangle=\overrightarrow{0}$ is in W.
(2) Let $\stackrel{\rightharpoonup}{v}, \vec{w}$ be in W.

Then, $\vec{v}=\left\langle x_{1}, 0\right\rangle$ and $\vec{\omega}=\left\langle x_{2}, 0\right\rangle$ where $x_{1}, x_{2} \in \mathbb{R}$.
Then, $\vec{v}+\vec{w}=\left\langle x_{1}+x_{2}, 0\right\rangle$ which is an element of W.
(3) Let \vec{z} be in W and α be in $F=\mathbb{R}$.
Since \vec{z} is in W we know that $\vec{z}=\langle x, 0\rangle$ where $x \in \mathbb{R}$.
Then, $\alpha \vec{z}=\alpha\langle x, 0\rangle=\langle\alpha x, 0\rangle$ which is an element of w.
By (1), (2), and (3) we have that W is a subspace of $V=\mathbb{R}^{2}$

Ex: Consider the rector space $V=\mathbb{R}^{2}$ over $F=\mathbb{R}$.

$$
\begin{aligned}
& W=\{\langle x, 1\rangle \mid x \in \mathbb{R}\} \\
& =\{\underbrace{\langle 0,1\rangle}_{x=0}, \underbrace{\langle\pi, 1\rangle}_{x=\pi}\rangle \underbrace{\left\langle-\frac{1}{2}, 1\right\rangle}_{x=-\frac{1}{2}}, \ldots\} \\
& \begin{array}{l}
\text { infinitely } \\
\text { many }
\end{array} \\
& V=\mathbb{R}^{2} \\
& .\langle 0,2\rangle \\
& w \\
& \cdot\langle 2,10\rangle \\
& <0,17 \\
& \text { (K, 1 }
\end{aligned}
$$

It turns out that w is not a subspace of $V=\mathbb{R}^{2}$.
For example:
(1) Note that $\vec{O}=\langle 0,0\rangle$ is not of the form $\langle x, 1\rangle$. Thus, $\overrightarrow{0} \notin \omega$. So ω is not a subspace of $V=\mathbb{R}^{2}$.

One could also show that (2) or (3) don't hold for W.

For example:
(2) Let $\vec{v}=\langle 2,1\rangle$ and $\vec{\omega}=\langle 3,1\rangle$.

Then $\vec{v}, \vec{\omega}$ are both in w.
However,

$$
\begin{aligned}
& \vec{\omega} \text { are both in } \\
& \vec{v}++\vec{\omega}=\langle 2,1\rangle+\langle 3,1\rangle \\
&-\langle 5,2\rangle
\end{aligned}
$$

$$
=\langle 5,2\rangle
$$

which isn't in W.
Thus, condition. (2) doesn't hold and W is not a subspace of $V=\mathbb{R}^{2}$.

Ex: Let $F=\mathbb{R}$ and

$$
\begin{aligned}
& \left.\begin{array}{rl}
V=M_{2,2} & =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\} \\
& =\left\{\left(\begin{array}{ll}
1 & 2 \\
5 & \pi
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \ldots . .\right\}
\end{array}\right\} \\
& \text { We talked about how } \left.\begin{array}{l}
\vec{O} \\
\text { in } M_{2,2}
\end{array}\right] \begin{array}{c}
\text { infindly } \\
\text { mandy } \\
\text { more }
\end{array} \\
& M_{2,2} \text { is vector space }
\end{aligned}
$$ Where vector addition is given by

$$
\begin{aligned}
& \text { here } \left.\begin{array}{ll}
\text { vector addition is given } b y \\
\text { here } & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right)
\end{aligned}
$$

and scalar multiplication is given by

$$
\begin{aligned}
& \text { and scalar multiplication } \\
& \alpha\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right)
\end{aligned}
$$

α in $F=\mathbb{R}$

Let

$$
\begin{aligned}
& \text { Let } \\
& \begin{aligned}
& W\left.=\left\{\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \left\lvert\, \begin{array}{l}
d=a+b \\
a, b, c, d \in \mathbb{R}
\end{array}\right.\right\} \\
&=\{\underbrace{\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)}_{2=1+1}, \underbrace{\left(\begin{array}{cc}
5 & -10 \\
\frac{1}{2} & -5
\end{array}\right)}_{-5=5-10}, \ldots, \ldots \\
& \begin{array}{c}
\text { infinitely } \\
\text { many more }
\end{array}
\end{aligned}
\end{aligned}
$$

Before we prove W is a subspace: $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \in W$ because $0=0+0$.

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \in W \text { because } \\
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right),\left(\begin{array}{cc}
5 & -10 \\
\frac{1}{2} & -5
\end{array}\right) \in W \text { and }\left(\begin{array}{ll}
1 & 1 \\
12
\end{array}\right)+\left(\begin{array}{cc}
5 & -10 \\
\frac{1}{2} & -5
\end{array}\right) \\
=\left(\begin{array}{ll}
6 & -9 \\
\frac{3}{2} & -3
\end{array}\right) \in W
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
6 & -9 \\
\frac{3}{2} & -3
\end{array}\right) \in W=W-2=6-9
$$

because $-3=6-9$
$\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right) \in \omega$ and $3 \cdot\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)=\left(\begin{array}{ll}3 & 3 \\ 3 & 6\end{array}\right) \in \omega$
because $6=3+3$

Let's prove that W is a subspace of $V=M_{2,2}$.
proof: We need to check the 3 criteria from the previous theorem.
(1) Is $\overrightarrow{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ in $W \vec{?}$

Yes, if we set $a=b=c=d=0$
then $\vec{O}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\frac{d=a+b}{0=0+0}$
(2) Is W closed under vector addition $\stackrel{\rightharpoonup}{\circ}$
Let \vec{v} and \vec{w} be in W.
Then, $\vec{v}=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$ and $\vec{\omega}=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$ where $a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, c_{2}, d_{2} \in \mathbb{R}$ and $\underbrace{d_{1}=a_{1}+b_{1}}_{\text {since } \vec{v} \in W}$ and $\underbrace{d_{2}=a_{2}+b_{2}}_{\text {since } \vec{\omega} \in W}$

Then,

$$
\begin{array}{ll}
\text { Then, } \\
\vec{v}+\vec{\omega}=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) .
\end{array}
$$

Adding $d_{1}=a_{1}+b_{1}$ and $d_{2}=a_{2}+b_{2}$ gives $d_{1}+d_{2}=a_{1}+b_{1}+a_{2}+b_{2}$

Regrouping gives

$$
\begin{equation*}
\xrightarrow[\rightarrow \text { using gives }]{d_{1}+d_{2}=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right)} \tag{*}
\end{equation*}
$$

(*) tells us that $\vec{v}+\vec{\omega}$ is in W.
So, W is closed under vector addition.
(3)
(3) Let's show that W is closed under scalar multiplication.
Let $\vec{z} \in W$ and $\alpha \in \mathbb{R}$

$$
F=\mathbb{R}
$$

Since $\vec{z} \in W$ we know that

$$
\begin{aligned}
& \text { ince } \vec{z} \in W \text { we know } \\
& \vec{z}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { where } a, b, c, d \in \mathbb{R} \\
& \text { and } d=a+b .
\end{aligned}
$$

and $d=a+b$.

$$
\begin{array}{r}
\text { Then, } \\
\alpha \vec{z}=\alpha\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\alpha a & \alpha b \\
\alpha c & \alpha d
\end{array}\right) \\
d=a+b \text { by } \alpha \text { give }
\end{array}
$$

Then,

Multiplying $d=a+b$ by α gives

$$
\begin{align*}
& \operatorname{ling} d=a+b \tag{x*}\\
& (\alpha d)=(\alpha a)+(\alpha b)
\end{align*}
$$

And $(* *)$ tells us that $\alpha \vec{z}=\left(\begin{array}{cc}\alpha a & \alpha b \\ \alpha c & \alpha d\end{array}\right)$ is in W.
Thus, W is closed vader scalar multiplication.

Since W satisfies properties
(1), 2), and (3) above,
W is a subspace of $V=M_{2,2}$.

